
KIT – The Research University in the Helmholtz Association www.kit.edu

Robotics II: Humanoid Robotics
Chapter 3 – Grasping

Tamim Asfour    http://www.humanoids.kit.edu 



Robotics II: Humanoid Robotics | Chapter 032

Table of Contents 

Fundamentals and Definitions 
Grasp Analysis and Grasp Synthesis
Grasp Contact 

Grasping in Humans 

Human Hand Models

Neuroscience of Grasping

Grasping Taxonomies
Cutkosky, Kamakura, Feix, Bullock & Dollar
KIT Taxonomy for Whole-Body Grasps  

Postural Synergies and Eigengrasps
Implementation of Synergies in Robotics
The TUAT/Karlsruhe Humanoid Underactuated Hand 

Grasping Known, Familiar and Unknown Objects 



Robotics II: Humanoid Robotics | Chapter 033

Fundamentals and Definitions
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Cognitive Grasping

Understanding Hands = Understanding Intelligence 

Homunculus

Ghez, C., and Krakauer, J. "The organization of movement." 
Principles of neural science 4 (2000): 653-73.

Grasping and manipulation as a control problem 
have been studied since the beginning of robotics. 
HOWEVER, very little has been done in terms of 
cognitive aspects of grasping, implementation and 
evaluation of systems

Large part of the human cortex is dedicated to 
grasping and manipulation, and it would seem 
reasonable to assume that all of this cognitive 
machinery is dedicated to finely controlling individual 
joints and generating highly flexible hand postures

Understanding how the human brain controls the 
hand 
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What Is a Grasp?

A system wherein a desired object is gripped by the 
fingers of a robot (or human) hand is generally called a 
grasp

Precision grasp: object gripped by fingertips only

Grasp = Set of contact points

Force-closure grasp: is a grasp which is able to 

1. generate any external force that the grasped object 
may have to exert on an external body and 

2. counteract any external disturbing forces that may 
try to loosen the grip

Prattichizzo and Trinkle. Handbook of 
Robotics. Chapter 28, Springer, 2016
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What Properties Are Essential to Grasps (I)

Researchers have identified a multitude of properties that an articulated force-closure 
grasp must possess in order for it to be able to perform everyday tasks similar to 
those performed by human hands

Four mutually independent grasp properties:

1. Dexterity: How should grasping fingers be configured?

2. Equilibrium: How hard to squeeze the grasped object?

3. Stability: How to remain unaffected by external disturbances?

4. Dynamic behavior: How soft a grasp should be for a given task?

Shimoga, K. B. "Robot grasp synthesis algorithms: A survey." The International Journal of Robotics Research 15.3 (1996): 230-266.
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What Properties Are Essential to Grasps (II)

Shimoga, K. B. "Robot grasp synthesis algorithms: A survey." The International Journal of Robotics Research 15.3 (1996): 230-266.
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Grasp Analysis and Grasp Synthesis

Analysis means the study of grasp 
properties for a given set of finger 
properties. 

Synthesis means the determination of the 
required finger properties in order for the 
grasp to acquire some desired properties.

Grasp = Set of contact points

Analysis

Grasp
Properties

Synthesis 

Finger 
Properties

Shimoga, K. B. "Robot grasp synthesis algorithms: A survey." The International Journal of Robotics Research 15.3 (1996): 230-266.
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Grasp Contacts

Each point contact can be modelled as either 

Frictionless point contact: Finger can only exert a force along the common 
normal at the point of contact   

Frictional point contact: A contact that can transmit both a normal and 
tangential force 

Soft contact: Allows the finger to exert a pure torsional moment about the 
common normal at the point of contact 

See Lecture Robotics I
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Contact models
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Rigid contact without friction
(normal force)

Rigid contact with friction
(normal and tangential 
forces)

Soft contacts
(normal and tangential forces as well 
as axial torque at contact point)

Contact point
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Prior object knowledge

Object-grasp representations

Features of different modalities such as 
2D or 3D vision or tactile sensors

Grasp synthesis

Task 

Hand kinematics

Bohg, J., Morales A., Asfour, T. and Kragic, D. "Data-driven grasp synthesis –
a survey." IEEE Transactions on Robotics 30.2 (2013): 289-309.

Red: relevant for the exam

What Influences the Generation of Grasp Hypotheses?
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Object Classes for Robot Grasping

Known objects (This is the domain of Grasp Planning!)

Known object geometry (i.e. we have a complete geometric object model)

Approach: Use various grasp planning methods (only for known objects!)

Hard

“Familiar” objects

Class of object is known (e.g. “bottle”)

Approach: Reuse grasp knowledge from known class members for new object

Harder

Unknown objects

No knowledge of the object

Challenges: Dealing with (incomplete) sensor data (stereo vision, RGB-D, laser scan, haptic data…), 
segmentation from the background, building a (partial) object model

Ideas: Multi sensor fusion, pushing the object, …

Hardest!
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Known objects (This is the domain of Grasp Planning!)

Known object geometry (i.e. we have a complete geometric object model)

Approach: Use various grasp planning methods (only for known objects!)

Hard

“Familiar” objects

Class of object is known (e.g. “bottle”)

Approach: Reuse grasp knowledge from known class members for new object

Harder

Unknown objects

No knowledge of the object

Challenges: Dealing with (incomplete) sensor data (stereo vision, RGB-D, laser scan, haptic data…), 
segmentation from the background, building a (partial) object model

Ideas: Multi sensor fusion, pushing the object, …

Hardest!

Grasp planning is 
always about 

known objects!

Object Classes for Robot Grasping
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Review Papers on Grasping 

Antonio Bicchi, Vijay Kumar, Robotic grasping and contact: A review. International 
Conference on Robotics and Automation, ICRA 2000

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic. Data-Driven Grasp 
Synthesis - A Survey. IEEE Transactions on Robotics, pp. 289-309, vol. 30, no. 2, 2014 

Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian, Clemens Eppner, 
Jürgen Leitner, Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Dieter 
Fox, Akansel Cosgun. Deep Learning Approaches to Grasp Synthesis: A Review. 
https://doi.org/10.48550/arXiv.2207.02556
(accepted to IEEE Transactions on Robotics in April 2023) 

https://doi.org/10.48550/arXiv.2207.02556
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Grasping in Humans – Human Hand Models
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The Human Hand: Bones and Joints

SaddleThumb Carpometacarpal (CM)

Thumb MP Acts as hinge
(flexion-extension)

Distal Phalanges

Carpal bones

Metacarpals

Proximal Phalanges

Intermediate Phalanges

1

Fingers Carpometacarpal (CM)

Intermetacarpal

Metacarpophalangeal (MP)

Proximal Interphalangeal (PIP)

Radiocarpal Condyloid

Condyloid

Gliding

Hinge

(more motion at the 5th CM)

(flexion-extension)Distal Interphalangeal (DIP)

2 3
4

5

From Hall, SJ: Basic Biomechanics
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The Human Hand: Anatomy

27 bones

27 DoF (total)

3 DoF flexion/extension type per finger

1 DoF abduction/adduction type per finger

5 DoF thumb: 

3 DoF flexion/extension  type

2 DoF abduction/adduction type

6 DoF at the carpus (palm)

Schmidt, U. and Lanz, H.-M. Chirurgische Anatomie der Hand. Stuttgart, New York, 2003. Georg  Thieme Verlag
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Human Hand Models in the Literature

Large variety of human hand models

Different kinematic models

Varying numbers of DoF

Depending on the purpose

Not only in robotics but also in computer vision, Human-Computer Interaction, 
biomedical engineering, … 

Different applications

Grasp planning and analysis: More complex thumb kinematics useful

Prosthetics hands 

Understanding human grasping 

Tracking (usually no intrinsic DoFs in the palm necessary)

Always trade-off between requirements for intended use and complexity
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Human Hand Models (I)

Cobos et al., 2008

24 DoF  (total)

1 DoF carpometacarpal
(CMC) joint per finger

4 DoF thumb

Miller et al., 2005

21 DoF (total)

5 DoF thumb, 2 versions:

perpendicular joint axes

non-perpendicular joint axes

Cobos, Salvador, et al. "Efficient human hand kinematics for 
manipulation tasks." IEEE/RSJ International Conference on 
Intelligent Robots and Systems (2008)

Miller, Andrew, et al. "From robotic hands to human hands: a 
visualization and simulation engine for grasping research." 
Industrial Robot: An International Journal (2005).
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Human Hand Models (II)

Du and Charbon 2007

24 DoF  (total)

1 DoF TM joint (twist type) per finger

4 DoF thumb

Kuch and Huang 1994
23 DoF (total)

2 DoF at the palm: at the base of ring and 
pinky metacarpals 

5 DoF thumb

Du, H., and Charbon, E. "3D hand model fitting for virtual 
keyboard system." IEEE Workshop on Applications of Computer 
Vision (2007)

Kuch, J. J., and Huang, T.S. "Human computer interaction via the 
human hand: a hand model." Asilomar Conference on Signals, 
Systems and Computers (1994)
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Human Hand Models (III)

Pollard and Zordan 2005

19 ball joints for a total of 57 DoF

for motion capturing use 

Stenger et al. 2001 

20 intrinsic DoF (total)

4 DoF per finger

4 DoF thumb

no DoF at the palm

Used for hand tracking

Hand joints represent segments in the model 

Pollard, N. S., and Zordan, V. B. "Physically based grasping control 
from example." Proceedings of the ACM SIGGRAPH/Eurographics
symposium on Computer animation (2005): 311-318.

Stenger, B., Mendonça, P. and Cipolla, R. "Model-based 3D tracking of 
an articulated hand." Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (2001): 310-315
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Karlsruhe Human Hand Model (MMM Model) 

Kinematics

23 DoF

Anthropometric data

Anatomically correct finger segment 
lengths depend on total hand length

Based on data from (Buchholz et al.  
1992)

Part of the MMM at H2T
https://git.h2t.iar.kit.edu/sw/mmm

https://git.h2t.iar.kit.edu/sw/mmm
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Grasping in Humans – Neuroscience of Grasping



Robotics II: Humanoid Robotics | Chapter 0324

The Neuroscience of Grasping (I)

Umberto Castiello. The neuroscience of grasping, Nature Rev. Neurosci. 6, 726–736 
(2005)

Red: relevant for the exam
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The Neuroscience of Grasping (II)

The study of grasping was advanced by 
Napier’s landmark work on PRECISION and 
POWER GRIPS.

Precision grasp: characterized by 
opposition of the thumb to one or more 
of the other fingers.

Power grasp: the fingers are flexed to 
form a clamp against the palm.

Napier, J. R. Hands (George Allen & Unwin Ltd, London, 1980).
Napier, J. R. “Studies of the hands of living primates” Proc. Zool. Soc. 134 (1960): 647–657 
Napier, J. R. “Prehensility and opposability in the hands of primates” Symp. Zool. Soc. 5 (1961): 115–132
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The Neuroscience of Grasping (III)

Napier showed that despite the enormous 
variability in aspects of movement such as force, 
posture, duration and speed, the underlying 
control principles were amazingly elegant. 

These principles were based on the supposition 
that the intended activity determines what type 
of grasp is used for any given action

Example: grasping a pen to write involves a 
different grip from grasping it to put it in a box.

Napier, J. R. Hands (George Allen & Unwin Ltd, London, 1980).
Napier, J. R. “Studies of the hands of living primates” Proc. Zool. Soc. 134 (1960): 647–657 
Napier, J. R. “Prehensility and opposability in the hands of primates” Symp. Zool. Soc. 5 (1961): 115–132
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The Neuroscience of Grasping (IV)

Since these early studies, grasping has been widely investigated in humans and monkeys using various 
tasks and techniques. 

Goal: Integrate information from various domains to ascertain which neural circuits underlie grasping

Paper’s contributions: 
Kinematics of grasping in humans and macaque monkeys. 
Evidence that grasping requires several neural mechanisms, some of which are concerned with 
individual finger force  and movement, and others that involve a specialized visuomotor system 
that encodes object features and generates the corresponding hand configurations.
Evidence from lesion and neuroimaging studies in humans is compared with neurophysiological 
studies in monkeys. 
Although much of the work on grasping comes from monkeys, and this work has contributed to our 
understanding, caution is necessary when drawing homologies across species. 
Factors that should be taken into account by neuroscientists in the quest to understand the neural 
bases of grasping.
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The Kinematics of Grasping (I)

Kinematics consider movement in terms of position and displacement (angular and 
linear) of body segments, center of gravity, and acceleration and velocities of the 
whole body or segments of the body.

The mechanics of grasping in humans and macaque monkeys vary depending on 
object attributes. 

Although the substantial differences in hand morphology between these two species 
are the focus of current debate, it is important to compare grasping in humans and 
monkeys because of the common practice of looking for homologies between the two 
species’ brains.
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The Kinematics of Grasping (II)

Jeannerod coded grasping in terms of changes in grip aperture 

Grip aperture is the separation between the thumb and the index finger

During a reach-to-grasp movement, there is first a progressive opening of the 
grip with straightening of the fingers, followed by a gradual closure of the grip 
until it matches the object’s size

The point in time at which the thumb-finger opening is the largest (maximum 
grip aperture) is a clearly identifiable landmark that 

occurs within 60–70% of the duration of the reach and 

is highly correlated with the size of the object

Jeannerod, Marc, ed. Attention and performance XIII: motor representation and control. Psychology Press (2018)
This paper was the first to characterize kinematically the reach-to-grasp movement in humans. This seminal work laid the foundation of much 
of our current understanding of grasping.

Jeannerod, M. "The timing of natural prehension movements." Journal of motor behavior 16.3 (1984): 235-254.
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The Kinematics of Grasping (III)

Castiello, Umberto. "The neuroscience of 
grasping." Nature Reviews Neuroscience
6.9 (2005): 726-736
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Kinematics of Grasping in Monkeys and Humans

Castiello, Umberto. "The neuroscience of 
grasping." Nature Reviews Neuroscience 6.9 
(2005): 726-736
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The Neurophysiology of Grasping (I)

Study of single cells in the monkey brain. 

Three specific areas relating to grasping have been 
identified in the monkey cortex

the primary motor cortex (F1), 

the premotor cortex (PML/F5)

and the anterior intraparietal sulcus (AIP). 

In terms of neural mechanisms, performing a 
successful grasping action depends primarily on the 
integrity of the primary motor cortex (F1)

In monkeys, lesions of this area produce a 
profound deficit in the control of individual 
fingers and consequently disrupt normal grasping

www.wikiwand.com/en/Primary_motor_cortex

thebrain.mcgill.ca/flash/a/a_06/a_06_cr/a_0
6_cr_mou/a_06_cr_mou.html
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Neural Circuits for Grasping in Monkeys and Humans

Given the wealth of evidence for a grasping circuit involving several areas in the 
monkey brain, the natural question is whether a similar circuit exists in humans. 

For ethical reasons, invasive physiological recording of brain activity is rarely possible 
in humans. Nonetheless, considerable progress has been made towards 
understanding the neural substrates of grasping in humans, mainly from studies of 
patients with brain damage and neuroimaging experiments.
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The Neuropsychology of Grasping (II)

Jeannerod found that in reaching out to grasp an object, the finger grip aperture of patients with 
optic ataxia was abnormally large, and the usual correlation between maximum grip aperture and 
object size was missing.

Optic ataxia is classically considered to be a specific disorder of the visuomotor transformation caused by posterior parietal lesions, in particular, 
lesions of the superior parietal lobe (SPL). Subjects with optic ataxia are unable to perform goal-directed vision-based hand motions 

Castiello, Umberto. "The neuroscience of 
grasping." Nature Reviews Neuroscience 6.9 
(2005): 726-736
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Grasp Phases in Humans

Humans divide the grasping 
process into distinct action phases:  
reach, load, lift, hold, replace and 
unload

Dexterous manipulation tasks are 
subdivided into different action 
phases.

For each action phase, the brain 
selects and execute an appropriate 
controller.

Comparison between predicted 
and current sensory signal (tactile 
information) used to monitor the 
progression and detect errors. Johansson, R., Flanagan, J. Coding and use of tactile signals from the fingertips in object 

manipulation tasks. Nat Rev Neurosci 10, 345–359 (2009)
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Grasp Phases in Humans

Humans divide the grasping 
process into distinct action 
phases:  reach, load, lift, hold, 
replace and unload

Johansson, R., Flanagan, J. Coding and use of tactile signals from the fingertips in object 
manipulation tasks. Nat Rev Neurosci 10, 345–359 (2009)

Our work:
Detection of phases with a 
soft humanoid hand

Implementation of controllers 
for each individual phase
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Humans divide the grasping process into distinct action phases 
(Johansson, R., Flanagan 2009)

Each phase is triggered by sensory events dependent on the phase

Each phase is associated with specific control goals

Grasp Phases in Humans

Reach Load Lift Hold Replace Unload

Object
Contact

Contact to
Surface lost

Manipulation

Contact to
Surface
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How to Transfer this to Robotics

Soft, sensorized hand

Grasping and placing of 
unknown objects

Grasp-Phases Controller

Weiner, P., Hundhausen, F., Grimm, R. and Asfour, T., Detecting Grasp Phases and Adaption of 
Object-Hand Interaction Forces of a Soft Humanoid Hand Based on Tactile Feedback, IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), pp. 3956-3963, September, 2021
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Tendons driven by three motors:
Thumb
Index finger
Middle, ring and little finger

Adaptive underactuation for the third motor
If one of the three fingers is blocked,
the others can still close

Sensors 
Joint Angle encoders
Distance Sensors
Accelerometers
Tactile sensors 

Normal force sensors (MEMS barometers)

Shear forces sensors (Hall-effect sensors)

KIT Soft Humanoid Hand
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Soft Sensorized Fingers – Sensors

Normal force sensors

Proximity sensor

Joint angle encoder

3D-Shear force sensors
with embedded magnets

Accelerometer

Encoder magnet
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Grasp Phases in Humanoid Robotics

Weiner et al. (2021)
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Grasping Taxonomies



Robotics II: Humanoid Robotics | Chapter 0343

Cutkosky Grasp Taxonomy 

Kamakura Taxonomy 

Feix GRASP Taxonomy 

Bullock & Dollar Taxonomy 

Taxonomy of Everyday Grasps in Action

Taxonomy of Bimanual Manipulation

KIT Taxonomy for Whole-Body Grasps 

Grasping Taxonomies
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Typical Grasp Motions of Daily Life

Keller, A. D., Taylor, C. L. and Zahm, V. “Studies to determine the functional requirements for hand & arm prostheses”, Dept. of Engr., UCLA., CA (1947)
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Why a Taxonomy? 

Deal with the hand complexity

Simplify grasp synthesis

Inspire hand design

Benchmark to test hand abilities (robotics and prosthetics) 

Optimization of synergies: Formulation of dexterity/functionality as number of 
achievable grasps for maximization

Guide autonomous grasp selection
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Cutkosky‘s Grasp Taxonomy (I)

16 grasp types organized in a hierarchical 
tree structure 

Power and Precision grasps 

Obtained by observing machinists during 
their work

Focus on using tools in a workshop

Cutkosky, M. R. "On grasp choice, grasp models, and the design of 
hands for manufacturing tasks." IEEE Transactions on robotics and 
automation 5.3 (1989): 269-279
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Cutkosky‘s Grasp Taxonomy (II)
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Cutkosky‘s Grasp Taxonomy (III)

In Uchiyama et al. 2027, 
the taxonomy is used 
for the classification of 
human grasping actions 
based on brain activity 
(EEG) 

Taxonomy provides a 
guideline for collecting 
data in the conducted 
user study (show and ask
participant to perform 
a certain grasp)

Uchiyama, E., Takano, W. and Nakamura, Y. "Multi-class grasping 
classifiers using EEG data and a common spatial pattern filter." 
Advanced Robotics 31.9 (2017): 468-481
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Kamakura Taxonomy (I)

• Kamakura, N., et al. "Patterns of static prehension in normal hands." American 
Journal of Occupational Therapy 34.7 (1980): 437-445

• N. Kamakura. Te no ugoki, Te no katachi (Japanese). Ishiyaku Publishers, Inc., 
Tokyo, Japan (1989)

• Keni Bernardin, Master Thesis, 2002, University of Karlsruhe 
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Kamakura Taxonomy (II)

Classification of grasps based on 
Finger positions 
Contact area with the object 

14 grasp patterns in 4 categories:
power
mid-power-precision
precision 
thumbless

Considers static (not dynamic) 
phases of prehensile grasps 
Humans use the grasping patterns 
based on object shape and object 
functionality
7 subject and 98 objects
General enough to describe most 
manipulation tasks
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Kamakura Taxonomy (III)
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Kamakura Taxonomy (IV)
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Kamakura Taxonomy (V)
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Kamakura Taxonomy (VI)
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Kamakura Taxonomy (VII)



Robotics II: Humanoid Robotics | Chapter 0356

The GRASP    Taxonomy of Human Grasp Types

Goal: Compare existing taxonomies and synthesize them into a single taxonomy

Only single-handed static and stable grasps considered

33 different grasps types arranged according to

Type (power, precision, intermediate)

Opposition type

Virtual finger assignments

Position of thumb

33 grasp types can  be reduced to a set of 17 more general grasps if only the hand 
configuration is considered without the object shape/size.

New classes arranged according to the number of fingers in contact with the object 
and the position of the thumb

Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., Kragic, D. "The GRASP Taxonomy of Human 
Grasp Types“, IEEE Transactions on Human-Machine Systems, 2016
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Grip type 

Powergrip: Rigid relation between object and hand

Precision handling: the hand is able to perform intrinsic movements on the object without 
having to move the arm

Intermediate: Elements of power and precision grasps are presented in roughly the same 
proportion

Opposition types: differ in the force direction applied between hand and object

a) Pad opposition

b) Palm opposition

c) Side Opposition

d) Hand coordinate System

Landsmeer, J. M., "Power grip and precision handling“, 
Annals of the Rheumatic Diseases, 1962

Needle or small ball Hammer or screwdriver Key or card

The GRASP    Taxonomy of Human Grasp Types



Robotics II: Humanoid Robotics | Chapter 0358

Virtual fingers (VF)

In many tasks, several fingers act 
together as a functional unit, the virtual finger 

Fingers belong to the same VF if they apply 
forces in a similar direction and act in union

Position of the Thumb

T. Iberall, “Grasp planning from human prehension,” 
in Proc. 10th Int. Joint Conf. Artif. Intell., 1987, vol. 2, 
pp. 1153–1156.

Thumb opposition Thumb oppositionPalm opposition

Examples:

The GRASP    Taxonomy of Human Grasp Types
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The GRASP    Taxonomy of Human Grasp Types
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The GRASP    Taxonomy of Human Grasp Types
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Bullock & Dollar Taxonomy

Hand-centric and motion-centric  manipulation  classification

Descriptive framework that can be used to effectively describe hand movements 
during  manipulation (in-hand manipulation) in a variety of contexts 

Combined with existing object centric or other taxonomies to provide a complete 
description of a specific manipulation task.

Red: relevant for the exam

Bullock, I. M., Raymond, R. M. and Dollar, A.M. "A hand-centric classification of human and robot dexterous 
manipulation." IEEE transactions on Haptics 6.2 (2012): 129-144
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Bullock & Dollar Taxonomy: Terminology 

Bullock, I. M., Raymond, R. M. and Dollar, A.M. "A hand-centric classification of human and robot dexterous 
manipulation." IEEE transactions on Haptics 6.2 (2012): 129-144
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Bullock & Dollar Taxonomy

Hand-centric and
motion-centric 
manipulation 
classification

Red: relevant for the exam

Bullock, I. M., Raymond, R. M. and 
Dollar, A.M. "A hand-centric 
classification of human and robot 
dexterous manipulation." IEEE 
transactions on Haptics 6.2 (2012): 
129-144
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Taxonomy of Everyday Grasps in Action

May daily grasps can be classified into existing 
taxonomies 

but grasp types in the taxonomies do not describe important grasp features such as 
indented motion, force, stiffness

Goal: Augment grasp taxonomies with more action related features

Similar grasps ???

Red: relevant for the exam

Liu, J., Feng, F. Nakamura, Y. C., Pollard, N. S., "A Taxonomy of Everyday Grasps in Action" IEEE-RAS 
International Conference on Humanoid Robotics, 2014
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A Taxonomy of Everyday Grasps in Action

Grasp classification based on 

Hand shape: similar to Feix and 
Napier

Force type: described by verbs 
(hold, lift, press, lever, roll, pull, push, 
squeeze, twist, …), 20 verbs in total  

Direction (of force or motion)
along a linear axis, rotation 
around an axis, movement within 
a plane, or inwards/outwards, towards or away 
from the center of an object 

Flow: effort factor (Laban Effort), i.e. “attitude 
toward bodily tension and control” and can be 
free (free motion in moving direction), bound 
(stiff, tightly coupled) and half-bound (bound 
along one or more axis, free along the rest.
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A Taxonomy of Everyday Grasps in Action

20 different force types Direction
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A Taxonomy of Everyday Grasps in Action

Flow Object related information
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Taxonomy of Bimanual Manipulation
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In Activities of Daily Living (ADL) humans commonly employ both hands

Bimanual Manipulation
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Robot programming by demonstration (PbD) for 
bimanual skills

→ goal: motion library

Multi-modal human motion recordings provide 
information on symbolic and sub-symbolic level

Intra-action variations should be included to allow 
the generation of generalizable action 
representations

KIT Bimanual Manipulation Dataset

Krebs*, F., Meixner*, A., Patzer, I. and Asfour,T. “The KIT Bimanual Manipulation Dataset“, 
IEEE/RAS International Conference on Humanoid Robots, 2021
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Taxonomies for Bimanual Manipulation

Previously presented taxonomies only deal with unimanual manipulations
→ however, humans execute most daily activities using both hands

Bimanual taxonomies focus on the coordination between the hands

Neuroscience/rehabilitation:

Kelso, 1984

Guiard, 1987

Kantak et al., 2017

Robotics:

Zöllner et al., 2004

Surdilovic et al., 2010 

Park et al., 2016

Volkmar et. al., 2019

Rakita et al., 2019
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Symmetric coordinated: both hands are 
manipulating the same object, forming a 
closed kinematic chain

Asymmetric coordinated: hands are 
manipulating different objects like in a tool 
handling task

Uncoordinated: no coordination needed, 
could also be executed by a single arm 
sequentially

Bimanual Taxonomy in Robotics

Context: Programming by Demonstration (PbD)

Zöllner, R., Asfour, T. and Dillmann, R. "Programming by demonstration: Dual-arm manipulation tasks for humanoid 
robots." IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004.



Robotics II: Humanoid Robotics | Chapter 0373

Context: Identify bimanual coordination deficits for  rehabilitation

Based on 1) Symmetry and  2) task goal 

Bimanual Taxonomy in Rehabilitation (Kantak et al.)

Symmetric Asymmetric

Bimanual

Independent goals Common goals

Parallel Cooperative

Independent goals Common goals

Parallel Cooperative

Arm movements 

Task Goals 

Kantak, S., Jax, S. and Wittenberg, G. "Bimanual coordination: A missing piece of arm rehabilitation after stroke." 
Restorative neurology and neuroscience, 2017
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Problems:

Inconsistent terminology e.g. symmetric for the same motion direction vs. 
grasping the same object

Structure vastly depends on the desired application 

Challenges in robotics: 

Include all features relevant for successful and robust motion reproduction
e.g. interaction forces, temporal and spatial constraints

A representation extendable to multi-agents (more than two) would be 
desirable, e.g. multi-robot interaction, human-robot interaction

Bimanual Taxonomies: Problems and Challenges
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KIT Bimanual Manipulation Taxonomy

bimanual 
manipulation

uncoordinated coordinated

loosely coupled tightly coupled

symmetric

unimanual bimanual

left right

coordination

interaction

symmetry

hand roles

asymmetric

left dominant right dominant

Krebs, F. and Asfour, T., A Bimanual Manipulation Taxonomy, IEEE Robotics 
and Automation Letters (RA-L), vol. 7, no. 4, pp. 11031-11038, 2022
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Extracting Bimanual Categories

• Classification 
based on contact 
graph and motion 
features 

• Defragmentation 
of segmentation

• Extract poses and 
velocities of  each 
node of the 
contact graph 

• Assign each node 
to a group 

Rule-Based 
Classification

Motion Feature
Extraction

• Nodes are the 
hands and all 
objects

• Edges are contact 
relations 
detected using 
the 3D models

Contact 
Graph

tightly_asym_right

hand configurations

object poses

3D models

hand poses
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A Bimanual Manipulation Taxonomy
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KIT Taxonomy of Whole-Body Poses (Grasps)
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Duality of grasping and balancing 

CM

Ground reaction forces
Weight of the body (CM)

Torques on the joints

Fingertip forces
Weight of the object (CM)
Torques on the joints

Equilibrium is reached by balancing similar sets of forces

CM
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Duality of Grasping and Balancing (II)

Concepts of grasping can be applied to loco-
manipulation

Grasp synthesisStep planning

Stable graspBalance

CM
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Duality of Grasping and Balancing (III)

• Asfour, T., Borràs, J., Mandery, C., Kaiser, P., Aksoy, E. E.  and Grotz, M. „On the dualities between grasping and whole-
body loco-manipulation tasks“ Robotics Research, Springer Proceedings in Advanced Robotics, Springer (2018)

• Borras, J., and Asfour, T. "A whole-body pose taxonomy for loco-manipulation tasks." 2015 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS). IEEE (2015)

• Borràs, J., Mandery, C. and Asfour, T., A Whole-Body Support Pose Taxonomy for Multi-Contact Humanoid Robot 
Motions, Science Robotics, vol. 2, no. 13, 2017 (http://robotics.sciencemag.org/content/2/13/eaaq0560)

Selection of support pose Grasp selection

Selection of contact points  Grasp synthesis

Classification of support Grasping taxonomies

pose possibilities

Red: relevant for the exam
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Whole-Body Grasps 
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Whole-Body Poses in Loco-Manipulation Tasks (I)

Given: humanoid, task and scene and its affordances:

How many poses can be realized?

Which pose should be selected ?

How to realize it?  planning, control

The whole-body can adopt many poses for balancing

Single 
foot support

Double
foot support

Classic postures: 

Postures and their 
transitions are very

well studied
http://www.innovatefpga.com/cgi-bin/innovate/teams.pl?Id=EM040
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Given: humanoid, task and scene and its affordances:

How many poses can be realized?

Which pose should be selected ?

How to realize it?  planning, control

Whole-Body Poses in Loco-Manipulation Tasks (II)

1 Hand
1 Foot

1 Hand
2 Feet

Double
knee support

1 Hand
2 Knees

1 Foot
1 Knee

Other possible combinations:

Considering other types of contacts:
Arm contactsDouble foot support

with hold (hand grasping
a handle)

Single 
foot support

Double
foot support

Classic postures: 

Postures and their 
transitions are very

well studied

The whole-body can adopt many poses for balancing

Taxonomy
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Towards a Taxonomy of Whole-Body Support Poses

Support pose: defined by contacts that provide balance support

Criteria for classification:
Number of contacts: Relevant for balance conditions/control
Type of contacts: Determine the mobility (DoFs) and the transmission of contact forces
Possible transitions: We only allow one contact change at a time.

Possible poses beyond walking

1 Hand
1 Foot

1 Hand
2 Feet

Double
knee support

1 Hand
2 Knees

1 Foot
1 Knee

How many combinations are possible?

Single 
foot support

Double
foot support

Classic postures

We ignore contacts with
manipulation objects

It depends on types of contacts considered!
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Type of Contacts
Possible contacts with extremities

Combinatory between number of contacts and type of contacts considered

Type of contacts with arms Type of contacts with legs

+  HoldTips Fingers Palm Arm
Tip-toes Feet Knees

𝑓 𝐶𝐿, 𝐶𝐴 = ෍

𝑁𝐿=1

2
𝐶𝐿 + 𝑁𝐿 − 1

𝑁𝐿
⋅ ෍

𝑁𝐴=0

2
𝐶𝐴 + 𝑁𝐴 − 1

𝑁𝐴

𝑓 3, 5 = 189
𝑓 2, 3 = 50

A total of 36 poses are selected. Difficult/complex/improbable poses are discarded. 

Examples of 
discarded poses

Hold is 
represented 

𝐶𝐿 = # type of leg contacts

𝐶𝐴 = # type of arm contacts 
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Taxonomy of Whole-Body Poses (I)

Borras, J., and Asfour, T. "A whole-body pose taxonomy for loco-manipulation tasks." 2015 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2015)
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Taxonomy of Whole-Body Poses (II)

18 standing poses 18 kneeling poses 10 resting 
poses

Total: 46 classes

Borras, J., and Asfour, T. "A whole-body pose taxonomy for loco-manipulation tasks." 2015 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2015)
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Taxonomy of Whole-Body Poses (III)

Borras, J., and Asfour, T. "A whole-body pose taxonomy for loco-manipulation tasks." 2015 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2015)
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Taxonomy of Whole-Body Poses (IV)

Borras, J., and Asfour, T. "A whole-body pose taxonomy for loco-manipulation tasks." 2015 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2015)



Robotics II: Humanoid Robotics | Chapter 0391

Taxonomy of Whole-Body Poses (V)

Borràs, J., Mandery, C. and Asfour, T., A Whole-Body Support Pose Taxonomy for Multi-Contact Humanoid Robot Motions, 
Science Robotics, vol. 2, no. 13, 2017 (http://robotics.sciencemag.org/content/2/13/eaaq0560)



Robotics II: Humanoid Robotics | Chapter 0392

Taxonomy of Whole-Body Poses (VI)

Borràs, J., Mandery, C. and Asfour, T., A Whole-Body Support Pose Taxonomy for Multi-Contact Humanoid Robot Motions, 
Science Robotics, vol. 2, no. 13, 2017 (http://robotics.sciencemag.org/content/2/13/eaaq0560)
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Classification of Whole-Body Actions

Type I: Actions to change the environment 

One support pose is selected to perform the manipulation

Only rows 1 to 3 of taxonomy allow manipulation actions

Type II: Actions to change the body

Succession of support poses to allow locomotion or balancing

All rows of taxonomy can be used

Type III: Combination of I and II

Contacts are used to balance and to change the environment

Only rows 2 to 4 of taxonomy

Walk on stairs with handleCrawling

Ex. of pose selection 
for action
“Hit an object”



Robotics II: Humanoid Robotics | Chapter 0394

Validation of the Taxonomy (I)

Analyses of different human loco-manipulation tasks with 
supports

Reference model of the human body 
(Master Motor Map: MMM) with 104 DoF

Motion capture data mapped to reference model of the 
human body (MMM)

Automatic segmentation to detect support poses and 
transitions

Automatic generation of a taxonomy of the poses and their 
transitions in the motion database



Robotics II: Humanoid Robotics | Chapter 0395

Analysis of Pose Transitions (I)
Going upstairs with a handle

Detection of support contacts highlighted in red
Generated graph of transitions:

Subject swings left foot with a right foot – right hand support pose



Robotics II: Humanoid Robotics | Chapter 0396

Analysis of Pose Transitions (II)
Lean on table to pick up a cup

Detection of support contacts highlighted in red
Generated graph of transitions:

The manipulation takes place on a one Hand – one Foot 
support pose
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Analysis of Pose Transitions (III)
Push recovery from a push from behind

Detection of support contacts highlighted in red

Generated graph of transitions:

Transitions with 2 changes of contacts.
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Analysis of Pose Transitions (IV)
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Validation of the Taxonomy (II)
Total of 121 motions processed

Locomotion

Upstairs/downstairs with handle 

Walk with handle

Walk avoiding obstacles using hand supports

Loco-manipulation 

Lean to reach/place/wipe

Bimanual pick and place of big objects

Balancing

push recovery 

recovery due to lost balance

Kneeling motions

4,5% of poses missed

all double foot supports (the looping edges)
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Validation of the Taxonomy (III)

Total of 388 motions processed
Locomotion

Upstairs/downstairs with handrail 

Walk with handrail

Walk using table for supports

Kneeling up and down

Crawling
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What Can We Do with It? 

Generate whole-body multi-contact pose sequences

Novel statistical approach for planning multi-contact
motions based on the taxonomy and
knowledge extracted from observing human motions

Representation of motions as a sequence of poses
(stance planning)

Mandery, Christian, et al. "Using language models to generate whole-body multi-contact motions." 
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016)
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Statistical Modelling of Pose Transitions (I)

Statistical models employed:

1. Modelling of pose transition probabilities using n-gram model :

𝑃 𝑝𝑡 (𝑝𝑡−4, 𝑝𝑡−3, 𝑝𝑡−2, 𝑝𝑡−1)) (N = 5)

2. Modelling of the average center of mass displacement for the execution of a given pose 
transition

Both models are learned from the support pose sequences extracted by segmentation 
of human motion data
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Statistical Modelling of Pose Transitions (II)

Linguistic approach related to the idea of an alphabet of motion:

Poses are words

Multi-contact motions are sentences, consisting of words (poses)

Starting point: Textual representation of pose sequences
e.g.: LeftFootRightFoot_1 LeftFoot_1 LeftFootRightFoot_2 RightFoot_4 ...

Textual representation can be used to learn a n-gram model which describes 
probabilities of pose transitions
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Language Model to Generate Multi-Contact Motions

n-gram language model:  Statistical approach to learning conditional transition probabilities between 
whole-body shape poses

Observed shape poses are “words” and observed motions are “sentences”

Here: n = 5, Witten-Bell smoothing

(determined empirically using grid search in parameter space:  consider perplexities on test fold in 5-fold cross-validation)

Language model learned from motion capture data (segmented poses):

20 trials of 7 walking tasks each; 2813 poses in total (~20 per motion)

Automatic detection of poses 

Spatial translation model:

Considers only translation along one coordinate axis (valid for walking in a straight line!)

Average from all observed instances of a certain translation

𝑃 𝑝𝑡 (𝑝𝑡−4, 𝑝𝑡−3, 𝑝𝑡−2, 𝑝𝑡−1)) (𝑛 = 5)
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Motion (Sentence) as Sequences of Poses (Words)
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Motion as Sequences of Poses on ARMAR-4
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Postural Synergies
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Postural Synergies

Literature 

Santello, M., Flanders, M. and Soechting, J.F. “Postural Hand Synergies for Tool Use” The 
Journal of Neuroscience, 18.23 (1998): 10105-10115

Bicchi, A., Gabiccini, M. and Santello, M. “Modelling natural and artificial hands with 
synergies” Philosophical Transactions of the Royal Society B, 366 (2011): 3153-3161

Red: relevant for the exam
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Introduction

Questions:

How do humans grasp? 

Do they control all the hand’s DoF

individually?

Answer from human grasping 
experiments:

"Experimental evidence indicates that 
the simultaneous motion and force of 
the fingers are characterized by 
coordination and covariation patterns 
that reduce the number of independent 
degrees of freedom to be controlled.“ 
(Bicchi et al., 2011)

In other words:

Not all finger joints are controlled 
independently when grasping an object.

Movements of the finger joints are 
strongly correlated.

Grasping movements are dominated by 
synergies in a (low-dimensional) 
postural space.

What are postural synergies?

Postural synergies are the correlation of 
degrees of freedom in patterns of more 
frequent use. 

Bicchi, A., Gabiccini, M. and Santello, M. “Modelling natural and artificial hands with 
synergies” Philosophical Transactions of the Royal Society B, 366 (2011): 3153-3161

Red: relevant for the exam
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Postural Synergies – Experiment (I)

Human subjects were asked to 
perform grasp motions for 
various objects.

No real objects were present, 
but the participants only 
imagined to grasp a large 
number of objects (n = 57) and 
moved the hand to a 
corresponding grasp 
configuration

Santello, M., Flanders, M. and Soechting, J.F. “Postural Hand Synergies 
for Tool Use” The Journal of Neuroscience, 18.23 (1998): 10105-10115

Red: relevant for the exam
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Postural Synergies – Experiment (II)

The hand movement was observed and 
measured by 15 sensors embedded in a 
glove (CyberGlove) 

Measurement sample rate 12 ms

Each hand posture describes a joint angle 
configuration of the human hand 
approximated by a 15 DoF hand model.

CyberGlove
© CyberGlove Systems Inc. (2017)

Santello et al. 1998
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Postural Synergies – Results (I)

Principal Component Analysis on the 
data

Results (observations): 

During grasping, the hand moves in 
a low-dimensional subspace.

Considering only the first two
principal components, 80% of the 
variance in the data can be 
represented.

Using the first three principal 
components, 97% of the variance 
can be represented.

Postural synergies defined by the first two principal 
components (PC1 and PC2)

The hand posture at the center of the PC axes is the average 
of 57 hand postures for one subject

Images rendered with the palm of the hand in the same 
orientation

Santello et al. 1998
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Postural Synergies – Results (II)

Distribution of hand postures in the 
plane of the first two principal 
components. 

The coefficients of the first two 
principal components are shown for 
each of the 57 objects for one subject. 

Note the lack of clustering and the 
distribution of the coefficients along 
two main axes. 57 objects and one subject

Santello et al. 1998
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Postural Synergies – Results (III)

Distribution of hand postures in the 
plane of the first two principal 
components. 

The coefficients of the first two 
principal components are shown for 
each of the 57 objects for one 
subject. 

Note the lack of clustering and the 
distribution of the coefficients along 
two main axes.

Interpolation between various grasp postures
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Postural Synergies – Subject Variance of the PCs

The first three PCs account for ~ 90% of the variance (average over all subjects)

The first two PCs account for ~ 84% of the variance (average over all subjects)

This suggests a significant reduction in the number of degrees of freedom 
(DOF) from 15 to 2 or 3 

77.6

87.1

87.8

89.3

80.1

PC1 + PC2 Santello et al. 1998
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Postural Synergies – How Many Effective DoF? 

The study shows also that there were also many instances in which pairs of 
joint angles were only poorly correlated, suggesting that there are more than 
two effective degrees of freedom for the control of hand posture and that 
several higher-order PCs would also be needed to represent this rather 
limited co-variation in joint angles

There are two alternative solutions to this paradoxical result:

higher-order PCs are needed but represent noise (random variability) in the 
system

higher-order PCs do in fact contribute to discriminating among hand shapes for 
different objects → additional DoF controlled by the CNS

Additional analysis needed! 
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Postural Synergies – Role of Higher-Order PCs (I)

Reconstruction of the hand posture using an 
increasing number of PCs (PC1, PC2, … PC14); 
PC15 was nearly zero 

Determine how much the representative 
information increased as the number of PCs 
increased 

If the higher-order PCs represent noise, the 
information about the object should not increase 
(may actually decrease) when higher-order PCs are 
used to define the hand posture

Conversely, if the higher-order PCs do contribute 
to discriminating among hand shapes, the 
information transmitted should increase as more 
PCs are included.

Santello et al. 1998



Robotics II: Humanoid Robotics | Chapter 03119

Postural Synergies – Role of Higher-Order PCs (II)

The amount of information continued 
to increase monotonically up to at 
least the 5th or the 6th PC, even 
though these higher-order PCs  
contributed little to the variance

Clearly, more than two degrees of 
freedom are used to mold the hand 
into the shape appropriate to grasp a 
particular object, and the higher-
order PCs do not simply represent 
random variability (noise)

Santello et al. 1998
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Postural Synergies – Role of Higher-Order PCs (III)

Given that higher-order PCs do not 
simply represent noise, it is possible 
that the hand postures associated 
with a few of the objects might be 
best represented by higher PCs, i.e., 
that the amplitude of the higher-order 
PCs might be substantial for one or a 
few objects 

Thus, the overall variance attributed to 
one PC might be small, but its 
contribution to a few postures might 
be large. 

If this were the case, the 
distribution of the PCs for the 57 
objects would be multimodal 
and/or have a broad range. But this 
is not the case (see Figure)  

Santello et al. 1998
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Postural Synergies – Role of Higher-Order PCs (IV)

Hence, higher PCs do not seem to contribute substantially to any one 
particular hand posture. 

These features were also found in the other subjects.

This finding implies that the amplitudes of higher-order coefficients were 
generally small, irrespective
of the object.

Variance

Santello et al. 1998



Robotics II: Humanoid Robotics | Chapter 03122

Postural Synergies – Role of Higher-Order PCs (V)

Distribution of normalized amplitudes of the first five principal components. 

The amplitudes of the first five PCs have been normalized to the maximum 
(or minimum) value of the first PC. The data shown are for one subject (U.H.). 
Note that the amplitudes of the 3rd through the 5th PCs are not statistically 
normal, and not
multimodal, even though
they contribute
substantially to the
information transmitted

Variance

Santello et al. 1998
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Discussion

This observation suggests the following interpretation. 
The control of hand shape is effected at two levels: 

One coarse control of hand shape with a few synergies, and 

a finer level that may be affecting all the joints.

Because the higher-order principal components were very small and were not 
consistent from subject to subject, the study was not able to characterize this 
“finer level of control” more precisely. 

The higher-order PCs have coefficients that are distributed among all of the joint 
angles, suggesting that this finer control is also distributed. 

This hypothesis is consistent with the observation that a disproportionate 
amount of sensorimotor cortical area is devoted to the hand. It is also consistent 
with previous demonstrations of a tendency for coordinated motion of the 
fingers. 
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Conclusions of this Work (I)

No evidence for a clustering of the static postures for the various objects was 
found

No straightforward relation: object shape – hand shape
Similar object shapes were often associated with grips that were quite distinct
(i.e., precision vs power grips). 

This supports previous classifications of grasps, based on which finger(s) and 
which part(s) of the finger(s) contacts and exerts force on the object
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Conclusions of this Work (II)

Relationship between static hand posture (i.e., kinematics) – control of 
contact force

They are not independent, because the hand must be shaped properly so that 
the correct set of fingers makes contact with the object. 
But there is no one-to-one relation between posture and force control,  i.e., very 
different contact forces may be exerted with the hand in the same posture, 
depending on the object

This is consistent with observations of neural activity in the hand area of 
primary motor cortex:

Monkeys controlling the grasp force of variously shaped objects showed that 1) 
the neural correlates of force and 2) the neural correlates of kinematics are 
dissociated
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Grasping Synergies 

Correlation of hand degrees of freedom in patterns of more frequent use (postural 
synergies)

No straightforward relation between object shape and hand shape
(precision and power grasp on the same object)

No  one-to-one relation between posture and force control
(different contact forces may be exerted with the hand in the same posture) 

How to extend applicability the synergy model to study force distribution in the actual 
grasp?  → soft synergy model (Bicchi et al.  2011)
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The First Three Synergies of the Hand 

The rows depict the first, second 
and third synergy of the human 
hand

The PCs extracted from hand 
postures can be transferred to 
joint angle trajectories

Hand closing motions can be 
designed by combining these 
trajectories of the different PCs

Bicchi, A., Gabiccini, M. and Santello, M. “Modelling 
natural and artificial hands with synergies” Philosophical 
Transactions of the Royal Society B, 366 (2011): 3153-3161
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Problems with the Synergy Model

Synergies can’t be modeled as rigid manifolds.

Example: Using the first synergy, when the hand closes around the object 
(𝜎1: 0 → 1), it touches first with index and thumb at 𝜎1 = 0.75 and after that 
fingers penetrate the object

Contact forces of the object
not considered  

Compliance in the hand is 
not considered 

Consequently, a new model
is necessary

𝜎1: 0 → 1

Bicchi et al. 2011
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The Soft Synergy Model (I)

Human hand (as an example): 

Compliance in the human hand is introduced by the musculotendinous system.  

Redundancy in the apparatus, together with its nonlinear elastic characteristic is 
used for changing the compliance of the agonist-antagonist pairs  

Question: How can a model of elasticity be introduced into the synergy 
model?  

Answer: Use a combination of  two force fields to control the physical hand.

One force field is attracting the physical hand towards a virtual hand (which is 
shaped on the synergy manifold). The attraction forces are generated by the 
hand impedance.   

The other force field is repelling the hand from penetrating the object at the 
contact points.
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The Soft Synergy Model (II)

The dynamical equilibrium between the two fields is found depending on the 
stiffness (more generally: mechanical impedance) of the hand actuation and 
control system.   

Reference hand moves on the synergy manifold (a-d) and represent an attractor 
for the real hand.

Real hand is repelled
by contact forces with
the object (e-h).

𝜎1: 0 → 1

Bicchi et al. 2011
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Synergies in Force Distribution

Questions:

Is the soft synergy model relevant to grasping?

Can the first few synergies suggested by Santello et al. (which were observed to 
generate a large part of pre-grasp postures) also explain the distribution patterns 
for grasp forces? 

Answer:

Yes. Application of the soft synergy model also allows making predictions on 
force distribution in manipulation (see experiment)
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Experiment

Associate each postural synergy through a numerical model of hand and 
object compliance to a contact force pattern.

Combine the resulting force synergies linearly with weights in order to 
minimize a grasp cost index. 

The grasp index reflects the capability of the grasp to resist external forces 
while avoiding slippage of the object in the hand (force-closure) and also 
weighs factors such as required actuator torques. 

Examples:

Precision grasp of a cherry-like object  

Power grasp of an ashtray
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Application of the Soft Synergy Model to Grasping

In wireframe is the reference hand, moving according to the constraint 
manifold corresponding to the first three synergies.

Bicchi et al. 2011
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Results

The force-closure property of grasps 
strongly depends on which synergies are 
used to control the hand. 

Grasp cost index variations with increasing 
number of synergies involved, for different 
hand compliance values

No improvement is observed beyond the 
first three synergies in the precision grasp 
case (top figure; cherry-like object), while 
continuous but small improvements are 
obtained in the whole-hand grasp case 
(bottom figure, ashtray).

Bicchi et al. 2011

Number of synergies 

Number of synergies 
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Long-Term Goals of Research in Hand Synergies

Long-term goal:
Define a set of synergies, ordered by increasing complexity 

Define a correspondence between 
a task (in terms of a number of different grasps, explorative actions and 
manipulations),  and 

the least number of synergies to make the task feasible.

A hand for basic grasps only could use the first two or three synergies in the 
basis. 

A manipulative hand with fine motion control of single joints (such as a piano 
player's hand) may require coordination of many more synergies.
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Eigengrasps
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Eigengrasps – Introduction

The grasp planning problem in robotics:
Find a hand pose and configuration (joint angle vector) relative to a known 
object such that the contact locations between hand and object prevent object 
motion relative to the hand, i.e. a stable grasp is achieved.

This can be treated as an optimization problem:
Vary hand pose and configuration until distances between desired hand contact 
points and object surface are zero and a mechanical stability criterion is satisfied.

However, the hand has:
6 DoF pose

21 DoF configuration/posture (in case of the human hand)

Solving a non-linear optimization problem in 27-dimensional space may take 
very long.
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Eigengrasps – Idea

Idea:

Do not use the complete 21 DoF hand configuration for the optimization process.

Instead, use only the first two hand synergies obtained from human grasping 
observations.

Thus, the 27-dimensional optimization problem is reduced to a 8-dimensional
optimization problem.

Theoretical justification: Most of the possible useful grasps should be found in 
the vicinity of a small set of points in configuration space.

Ciocarlie et al. presented a grasp planning algorithm based on this idea and 
coined the term "eigengrasps“ for the principal components of the human 
grasp configuration data. Ciocarlie, M., Goldfeder, C. and Allen, P. “Dimensionality reduction for hand-

independent dexterous robotic grasping”, IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS), (2007): 3270-3275

Red: relevant for the exam



Robotics II: Humanoid Robotics | Chapter 03139

Eigengrasps – Formalism (I)

Let 𝑑 be the total number of DoF of the hand and 𝜃𝑖 the 𝑖-th DoF, then a 
hand configuration 𝒑 can be defined as

𝒑 = [𝜃1, 𝜃2, … , 𝜃𝑑] ∈ ℝ𝑑.

Each eigengrasp 𝑒𝑖 is a 𝑑-dimensional vector and can also be thought of as 
direction of motion in joint space:

𝒆𝒊 = [𝑒𝑖,1, 𝑒𝑖,2, … , 𝑒𝑖,𝑑] ∈ ℝ𝑑

The idea is now that the eigengrasps 𝒆𝒊 form a low-dimensional basis for 
grasp configurations, and can be linearly combined to closely approximate 
most common grasping configurations.
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Eigengrasps – Formalism (II)

By choosing a basis comprising 𝑏 eigengrasps, a hand configuration placed in 
the subspace defined by this basis can be expressed as a function of the 
amplitudes 𝒂𝒊 along each eigengrasp direction

𝒑 =෍

𝑖=1

𝑏

𝑎𝑖𝒆𝒊

A hand configuration is therefore completely defined by the amplitudes 
vector

𝒂 = [𝑎1, … , 𝑎𝑏] ∈ ℝ𝑏.
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Eigengrasps

Similar to the human hand, eigengrasps for robotic hands can be defined by 
combining several DoF of the respective hand

Ciocarlie et al. 2007
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Eigengrasps – Optimization Problem

In order to find stable grasps, one minimizes the energy function

𝐸 = 𝑓 𝒂,𝒘

𝒂 ∈ ℝ2 is the vector of eigengrasp amplitudes 

𝒘 ∈ ℝ6 is the vector describing the wrist pose

𝑓(. , . ) is a function consisting of several components:

The sum of distances between the desired contact points on the hand and the object surface

The sum of angular differences between the orientation of the surface normals at the contact 
locations and the closest point on the object

A modified grasp quality measure based on the grasp wrench space

See (publicly available) source code of the GraspIt! simulator for further details: 

http://www.cs.columbia.edu/~cmatei/graspit/

Ciocarlie et al. 2007

http://www.cs.columbia.edu/~cmatei/graspit/
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Optimization Process

Use simulated annealing as an optimization algorithm

Example: Best state found after k iterations 

Ciocarlie et al. 2007
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Eigengrasps

Hand poses and configurations 
found by the optimization 
process for several hands and 
test objects

Ciocarlie et al. 2007
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Eigengrasp Planning – Some Further Thoughts (I)

Optimization in the eigengrasp space with only two 
principal components does not necessarily lead to 
hand configurations where all (most) finger 
segments are in contact with the object‘s surface.

This is in line with the finding that the higher 
synergies are not simply noise but do in fact 
represent details of the object‘s shape.

Solution: After a fixed number of iterations (or a 
certain period of time), stop the optimization 
process and close the finger joints until contact to 
the object prevents further motion.
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Eigengrasp Planning – Some Further Thoughts (II)

The algorithm does not work well with 
non-convex objects.

The algorithm can be modified towards 
finding precision grasps by considering only 
desired contact points at the fingertips (see 
picture).

Ciocarlie et al. 2007
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Implementation of Synergies in Robotics
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Literature Red: relevant for the exam

Brown C. Y. and Asada, H. “Inter-Finger Coordination and Postural Synergies in Robot 
Hands via Mechanical Implementation of Principal Components Analysis”, IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), (2007): 2877 - 2882
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Building Robot Hands Based on Postural Synergies

Do we really need (want) to independently control 21 DoF in a robotic hand? 

Example: Shadow hand, … 

Engineer's perspective: 

The more motors in the hand...  

... the more expensive the hand  

... the heavier the hand (load on the robot arm!)  

... the harder to control 

A different approach:  

Use only as many motors as necessary.

Use a mechanical implementation of postural synergies

This is part of a whole area of research: underactuated hands
© Shadow Robot Company (2020)
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Mechanical Implementation of Hand Synergies

Each desired posture (configuration) of the robot hand is represented by a 
posture vector: 

𝑷𝒊 = 𝑧1… 𝑧𝑗 … 𝑧𝑛
𝑇

The elements 𝑧𝑗 of the posture vector are the linear tendon displacements

required to create the posture.

Given 𝑁 posture vectors, we define the posture matrix:

𝑷 =

𝑷𝟏
𝑻

⋮
𝑷𝒊
𝑻

⋮
𝑷𝑵
𝑻
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Mechanical Implementation of Hand Synergies (I)

Principal Components Analysis (PCA) lets us rewrite the posture matrix as the 
product of two smaller matrices: 

one matrix consisting of the principal component vectors and 

one matrix consisting of the weights for those vectors.

Similar to singular value decomposition (see Brown and Asada 2007)

First, calculate the covariance matrix of 𝑷. 

Next, find the eigenvectors of the covariance matrix. 

These are the principal components of 𝑷. Their associated eigenvalues, ranked 
from largest to smallest, represent the relative importance of each component 
(i.e. the variance in the data explained by the respective component).  

Since these principal components can be used to reconstruct the entire posture 
matrix, we call them eigenpostures.
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Mechanical Implementation of Hand Synergies (II)

If we choose to use only a few of the eigenpostures, then we can still 
approximate the posture matrix with reasonable accuracy.
Here, we use only two principal components, so:

𝑷 ≈ ෡𝑷 =

𝑞1,1 𝑞1,2
⋮

𝑞𝑖,1 𝑞𝑖,2
⋮

𝑞𝑁,1 𝑞𝑁,2

𝒆𝟏
𝑻

𝒆𝟐
𝑻 +

ҧ𝑧1 ⋯ ҧ𝑧𝑛
ҧ𝑧1 ⋯ ҧ𝑧𝑛

⋮
⋮

ҧ𝑧1 ⋯ ҧ𝑧𝑛

The values 𝑞𝑖,𝑘 are scalar weights.
The vectors 𝒆𝒌 are the eigenpostures.
The additional term on the right is a zero-offset common to all postures (the 
average posture in the set)
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Mechanical Implementation of Hand Synergies (III)

Now we can rewrite each posture vector as:

𝑷𝒊 ≈ 𝑞𝑖,1𝒆𝟏 + 𝑞𝑖,2𝒆𝟐 + ത𝒛, where ത𝒛 = [ ҧ𝑧1… ҧ𝑧𝑗 … ҧ𝑧𝑛]

Goal: Find a way to realize this equation through mechanical means! 

Problems to be solved in this context:

How to actuate a vector multiple 𝑞𝑖,𝑘𝑒𝑘?

How to mechanically add two vector quantities?

How to account for the zero offset ҧ𝑧?
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How to Actuate a Vector Multiple?

We can use the individual elements of 𝒆𝒌 =

𝑑𝑘,1… 𝑑𝑘,𝑗 … 𝑑𝑘,𝑛 as the diameters of 

pulleys fixed on a shaft (see figure) 

𝑞𝑖,𝑘 is represented in the angle of rotation of 
the shaft, 𝜙𝑖,𝑘 = 2𝑞𝑖,𝑘. 

The tendon displacements 𝑦𝑖,𝑘,𝑗 equal the 

elements of 𝑞𝑖,𝑘𝒆𝒌.

If any of the values 𝑑𝑘,𝑗 are negative, we can 

account for this by wrapping tendons in 
opposite directions.

Brown and Asada 2007
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How to Mechanically Add Two Vector Quantities?
Add two scalar values by the mechanism in the figure.

The pulley in the figure is free to translate in the vertical direction. 

This configuration also winds up scaling the output,

so that: 𝑧𝑖,𝑗 =
1

2
(yi,1,j + yi,2,j)

Attach one of these mechanisms to each of the outputs
yi,k,j from the mechanism on the previous slide. 

Then the  vector output becomes:

[𝑧𝑖,1…𝑧𝑖,𝑛] =
1

2
( yi,1,1…yi,1,n + yi,2,1…yi,2,𝑛 )

[𝑧𝑖,1…𝑧𝑖,𝑛] =
1

2
(𝑞𝑖,1𝒆𝟏 + 𝑞𝑖,2𝒆𝟐)
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Putting Everything Together

How to account for the zero offset value ҧ𝑧?  

Simply adjust the tendon lengths so that [𝑧𝑖,1…𝑧𝑖,𝑛] = ҧ𝑧 when the shafts are in 
their zero position (Φ1 = Φ2 = 0)

The complete mechanism:

Brown and Asada 2007
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The Resulting 17 DoF 5-Fingered Robotic Hand

The eigenposture mechanism Sliding pulley details and tendon 
routing

Brown and Asada 2007
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The TUAT/Karlsruhe Humanoid Underactuated Hand
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Underactuation

Underactuation expresses the property of a system to have an input vector of 
smaller dimension than the output vector 

In robotics, it means having fewer actuators than degrees of freedom (DoF)

Simple control 

Adapt to the shape of the object 

Mechanical intelligence 
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The TUAT/Karlsruhe Humanoid Underactuated Hand

Humanoid Robot  ARMAR
Univ. of Karlsruhe, Germany 

Joint work: Naoki Fukaya and Tamim Asfour

Artificial arm by using spherical ultrasonic motor
Tokyo Univ. of Agriculture  and Technology 
(東京農工大学／TUAT)

Fukaya, N., Toyama, S., Asfour, T. and Dillmann, R. (2000) “Design of the
TUAT/Karlsruhe Humanoid Hand”, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
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The TUAT/Karlsruhe Humanoid Hand (I)

1. Light weight, similar size, similar motion
2. Only one actuator
3. No need for sensors, simple operation
4. Self-make a best gripping shape
5. Self adjustment of fingertip force
6. No need for feedback control

The core idea is the 
”Mechanism”

Red: relevant for the exam

Fukaya, N., Asfour, T., Dillmann, R. and Toyama, S. “Development of a Five-
Finger Dexterous Hand With Feedback Control: The TUAT/Karlsruhe
Humanoid Hand”, IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), (2013): 4533-4540
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The TUAT/Karlsruhe Humanoid Hand (II)

Keller et al. 1947
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The TUAT/Karlsruhe Humanoid Hand (III)
Finger link mechanism for finger TUAT/Karlsruhe hand mechanism 

Palm moving mechanism

Fukaya et al. 2000
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Latest Version (2013)

This hand realizes Cutkosky’s 
taxonomy and 14 kinds of 
operations of daily life 

It operates by one large servo 
motor and 6 small auxiliary 
servo motors. 

Needs no feedback control, 
touch sensor and complex 
control system

Fukaya et al. 2013
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Further development by Naoki Fukaya

The TUAT/Karlsruhe Humanoid Hand (IV)

Fukaya et al. 2013
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The TUAT/Karlsruhe Humanoid Hand

Further development at KIT for 3D printing
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The TUAT/Karlsruhe Humanoid Hand

Further development at KIT for 3D printing
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The KIT Prosthetic Hand

Personalized prosthetic hands with semi-autonomous grasping abilities 

Camera

TUAT-Karlsruhe hand mechanism 

Weiner, P., Starke, J., Hundhausen, F., Beil, J. and Asfour, T., ”The KIT Prosthetic Hand: Design 
and Control”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 
(2018):3328-3334

Red: relevant for the exam

Fukaya et al. 2000



Robotics II: Humanoid Robotics | Chapter 03169

Intelligent Grasping
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KIT Male and Female Prosthetic Hands (I)

Prostheses sized according to the 
50th percentile male/female hand

Scalable in all dimensions according 
to the able hand

Parts are 3D-printed using selective 
laser sintering in durable plastic

10 degrees of freedom: 

One motor for thumb flexion

One motor for flexion of all fingers
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KIT Male and Female Prosthetic Hands (II)

Male Female

Palm length 111 mm 100 mm

Palm width 87 mm 77 mm

Palm depth 30 mm 28 mm

Thumb 75 mm 62 mm

Index 85 mm 77 mm

Middle 94 mm 88 mm

Ring 90 mm 83 mm

Little 74 mm 67 mm
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Underactuated Mechanism (I)

All four long fingers are actuated by 
one motor

Finger joints are driven by tendons

Motor force is distributed among the 
fingers by an underactuated 
mechanism

Whipple tree with pulley block (male 
version)

Double pulley block (female version)

Index
Middle

Ring
Little
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Underactuated Mechanism (III)

Motor

Freely 
movable
pulleys

Freely 
movable
pulleys
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Underactuated Mechanism (IV)

An underactuated mechanism is 
integrated into both hands

A PCB for the embedded system is 
stacked on the mechanism

Tendons are routed with pulleys 
and low-friction tubes from the 
motors to mechanism and fingers

Mechanism
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Underactuated Mechanism (V)

The mechanism allows for 
adaptive underactuation

Individual joints and 
fingers can move, while 
others are blocked

Fingers wrap around 
arbitrarily shaped objects

Weiner et al. 2018
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Embedded System 

Microcontroller system (ARM, 400MHz) is 
embedded into the hand

Integrates an IMU (female version) and 
interfaces for camera and display

Processing of sensor values

Embedded vision and deep convolutional 
neural networks

Control of all functions and motors

Wireless communication with Bluetooth LE

Enables multichannel feedback

30 x 50 mm in size (female version)

User does not need any external device
for intelligent functions

Weiner et al. 2018
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Multimodal Sensor System and Display

Camera

Distance
Sensor

RGB Colour
Display

IMU (integrated
on PCB)
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Multimodal Sensor System

An IMU is integrated into the hand

Allows to estimate the prosthesis’ pose

Can be used as a user input device: recognition of simple gestures

A distance sensor is mounted next to the camera

Time of flight distance sensing → no influence of 
ambient light/object reflectance

Allows to estimate the distance to the image plane

The RGB camera is installed in the palm 
of the prosthesis

It is directly connected to the embedded system
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Semi-Autonomous Grasping with Deep CNNs 

Training of a DCNN with images taken by the camera 

Object recognition (daily objects)  with a DCNN 
implemented on the embedded system

Finger pre-shaping and grasp force can be autonomously 
selected based on the recognized object

Hundhausen, F., Megerle, D. and Asfour, T., ”Ressource-Aware Object Classification and 
Segmentation for Semi-Autonomous Grasping with Prosthetic Hands”, IEEE/RAS International 
Conference on Humanoid Robots (Humanoids), (2019): 215-221
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Semi-Autonomous Grasp Control
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The TUAT/Karlsruhe Hand and the KIT Hands

Publications

Fukaya, N., Asfour, T., Dillmann, R. and Toyama, S., “Development of a Five-Finger Dexterous 
Hand without Feedback control: the TUAT/Karlsruhe Humanoid Hand”, IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS) (2013): 4533-4540

Fukaya, N., Asfour, T., Dillmann, R. and Toyama, S., “Design of the TUAT/Karlsruhe Humanoid 
Hand” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2000): 1754-
1759

Weiner, P., Starke, J., Hundhausen, F., Beil, J. and Asfour, T., ”The KIT Prosthetic Hand: Design 
and Control” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018): 
3328-3334

Hundhausen, F., Megerle, D. and Asfour, T., ”Ressource-Aware Object Classification and 
Segmentation for Semi-Autonomous Grasping with Prosthetic Hands”, IEEE/RAS International 
Conference on Humanoid Robots (Humanoids), (2019): 215-221

Red: relevant for the exam
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Chapter 3 – Outline Grasping 

Fundamentals and Definitions 
Grasp Analysis and Grasp Synthesis
Grasp Contact 

Human Hand Models
Grasping in Humans 

Neuroscience of Grasping
Grasping Taxonomies

Cutkosy, Kamkura, Feix, Bolluck & Dollar
KIT Taxonomy for Whole-Body Grasps  

Postural Synergies and Eigengrasps
Implementation of Synergies in Robotics
The TUAT/Karlsruhe Underactuated  hands

Grasping Known, Familiar and Unknown Objects 
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Grasping Known Objects
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Grasping Objects: Outline

Grasping known objects

Recap (see “lecture Robotics I”)

Grasping familiar/similar  objects
Concepts

Different approaches

Part-based grasp planning for familiar/similar objects

Grasping unknown objects
Concepts

Approximating unknown object shape

From low-level features to grasp hypotheses
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Object

Grasping Known Objects: Typical Flow-Chart

Grasp generation Grasp simulation
Grasp 

ranking

Object models 
database

Object-grasp 
database

Object recognition
Pose 

estimation

Grasp selection and 
reachability filtering

Scene 
segmentation

Scene

Execution

Offline

Online

Grasp 
candidates

Ranked grasp 
hypotheses

Object ID 

Object 
models

Object 
hypothesis

Object 
model

Object pose 
and scene 

context
Grasp

Contact 
points

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE 
Tran. on Robotics, pp. 289-309, vol. 30, no. 2, 2014 
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KIT Object database 

http://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/

Representation Source Usage

Point cloud Object Modeling Center Part based grasping

Triangle mesh Point cloud, simplified Collision detection and visualization

Textured mesh Additional textures Visualization (vision simulation possible)

Vision data Real images, synth. views Object detection and localization

http://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
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Grasp Simulator - Simox

Developed at H2T
Open Source (LGPL)
C++
Robot Independent:
ARMAR-III, ARMAR-4, iCub, ….

Structure
VirtualRobot: Kinematic simulation of 
complex (multi) robot systems
Saba: Motion Planning 
GraspStudio: Grasp Planning
SimDynamics: Dynamics Simulation

Sources
https://gitlab.com/Simox/simox 

Wiki
https://gitlab.com/Simox/simox/wikis/home
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Known: Grasp Synthesis on Object Parts

Question: How to generate good grasp candidates?

Approaches for different segmentation methods
Shape primitives
Manual segmentation into primitives
(e.g. boxes, cylinders, spheres, cones)

Box decomposition
Automatic segmentation into boxes 

Superquadrics
Automatic segmentation into superquadrics

Medial axis transformation
Use only spheres

Surface normals
See lecture “Robotics I”
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Grasping Familiar Objects
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Grasping Objects: Outline

Grasping known objects
Recap (see “lecture Robotics I”)

Grasping familiar/similar objects
Concepts

Different approaches

Part-based grasp planning for familiar/similar objects

Grasping unknown objects
Concepts

Approximating unknown object shape

From low-level features to grasp hypotheses
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Grasping Familiar Objects: Concept

Identify categories of objects with common characteristics/features
Visual: texture, shape, spatial constellation

Semantic: Functionality, affordances, task

Train grasps on a set of known objects (or known object parts)
Store features and generated grasps (feature-grasp relations)

Use learning mechanisms for generalization

Grasp new but familiar/similar objects
Categorize the new object

Recall grasp hypothesis of objects in the same category

Adapt grasp hypothesis to new object

Optional: Update database with new data
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Grasping Familiar/Similar Objects: Approaches

Discriminative approaches
Learn the decision boundary between classes 

Learn a discriminative function to separate positives (good) and negatives (bad)  grasps 

Use low-level 2D and/or 3D features

Grasp synthesis by comparison
Find the most similar object in the database

Adapt good grasps for that object

Grasp synthesis by shape deformation
Learn shape deformation for each object class

Use deformation to transfer grasps from database

Generative models for grasp synthesis
Learn the distribution of grasps for each class

Use model (learned distribution) to generate grasps directly

Category-based grasp synthesis
Use object categories and semantics to determine similarity
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Generative vs. Discriminative 

Generative classifiers

Gaussian Mixture Model (GMM)

Naïve Bayes

Bayesian Networks (BN)

Markov Random Fields

Variational Autoencoder

Generative Adversarial Network (GAN)

Discriminative Classifiers

Logistic regression

Scalar Vector Machine (SVM)

Nearest Neighbour

Conditional Random Fields (CRFs)

Generative or Discriminative

Neural Networks (NN)

Hidden Markov Models (HMM)
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Discriminative Approach: Rao et al. 1/2

Goal: Learn which parts of the scene are graspable or 
ungraspable 

Preprocessing:  Segmentation 
Segmentation based on depth information

Feature vector
Color information (LAB color space)

Variance in depth and height of segments (3D)

Width and height of segments (2D)

Learning mechanism
Support Vector Machine (SVM) with Gaussian
Radial Basis Function (RBF) kernel

D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. 
Ng, Grasping novel objects with depth segmentation, in 
Proc. IEEE/RSJ, Int. Conf. Intell. Robots Syst., 2010

Offline Learning

Online
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Discriminative Approach: Rao et al. 2/2

Labeled example 
database

Feature
extraction

Learning feature-
grasp relation

Sample

Features

Grasp label of 
sample

Feature
extraction

Scene 
segmentation

Learned model 
features - grasp

Scene

Segmented 
cluster Features

Grasp selection 
and filtering

Execution

Scene context Grasp hypotheses

Grasp

Offline Learning

Online

Learned model
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Grasp Synthesis by Comparison

Find the most similar object (part) in the database

Use the associated grasps to generate good grasp hypotheses

Examples

Synthetic data

Requirement: 3D object models (for exemplary and familiar objects)

Use 3D models to calculate similarity

Transfer grasp to familiar/similar object

Real sensor data

Use object representation from sensor data

Execute on real robot

Learn from past and new grasp experiences
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Synthetic Data: Li and Pollard

Grasp synthesis as a shape matching problem

Offline: create database with  hand poses

Online: Query matching hand pose for an object

Hand pose database

Contact points and normals

On hand and known object

Shape matching process

Query: new object model

Find: Hand pose with matching/similar 
contact points and normals

Y. Li and N. Pollard, A Shape Matching Algorithm for synthesizing 
humanlike enveloping grasps, in Proc. IEEE/RAS Int. Conf. Human. 
Robots (Humanoids), Dec. 2005, pp. 442–449.
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Real Sensor Data: Herzog et al. 1/3

Training data

Programming by demonstration

Generate templates from demonstrated grasps

Template

Local shape descriptor for a possible grasp pose

templates encode object height maps that are 
sampled from various height-axes

Generated from 3D depth data

Matching

Find best matching template according to the 
local shape

A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, and S. Schaal, 
Template-based learning of grasp selection, in Proc. IEEE Int. Conf. Robotics and 
Automation, 2012, pp. 2379–2384.
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Real Sensor Data: Herzog et al. 2/3

Scene

Scene
segmentation

Feature
extraction

Comparison to 
known examples

Learned model / 
grasp-features 

database

Reachability 
filtering

Execution

Grasp
evaluation

Grasp hypotheses

Features

Scene context

Segmented cluster

Grasp

Model update

Features
Grasp candidates

Learn from 
experience
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Real Sensor Data: Herzog et al. 3/3
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Grasp Synthesis by Shape Deformation:
Rodriguez et al. 1/3

Based on Coherent Point Drift (CPD). CPD determines 
a transformation to deform point cloud A into point cloud B

Offline Phase (per object class)

Set of different object models per class

Creates a latent shape space for the models

Online Phase

Object detection and segmentation

Use latent shape space to adapt grasps to the detected object

D. Rodriguez, C. Cogswell, S. Koo, and S. Behnke, Transferring Grasping Skills to Novel Instances by Latent 
Space Non-Rigid Registration, in Proc. IEEE Int. Conf. Robot. Autom., 2018

https://en.wikipedia.org/wiki/File:Cpd_fish_rigid.gif
(CC-BY-SA 3.0)
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Grasp Synthesis by Shape Deformation:
Rodriguez et al. 2/3 – Offline Phase

Input: different object models of the same class (full point cloud)

Select one object model as canonical model 𝐶→ 𝐶, 𝐺

Calculate Deformations for all models → 𝑇𝑖 , 𝑊𝑖

Turn 𝑊𝑖 into row vectors, normalize them (zero-mean, unit-variance) → 𝑤′𝑖
Stack them to form 𝑌

PCA on 𝑌

Take first 𝑛 components
as latent shape space
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Grasp Synthesis by Shape Deformation: 
Rodriguez et al. 3/3 – Online Phase

Requires object detection and instance 
segmentation in advance 

Input: Canonical model, latent shape space, 
observed point cloud

Use Estimation Maximization (EM) to determine 
𝑊 for the observed point cloud

Use CPD to transform grasping trajectories from 

𝐶 to 𝑇
observation

canonical
model 𝐶

transformed
canonical 
model 𝑇

Transformation 𝑇 = 𝐶 + 𝐺𝑊
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Generative Models for Grasp Synthesis: Song et al.
Infer grasp configuration for an object given a 
specific task

Joint distribution of variables is modelled as 
Bayesian network

Training data:

Grasp examples generated in grasping simulator 
(GraspIt!)

Annotated with task-specific quality metrics

Improved structure learning

Nonlinear dimensionality reduction

D. Song, C. H. Ek, K. Hübner, and D. Kragic, Multivariate discretization for bayesian network structure 
learning in robot grasping, in Proc. IEEE Int. Conf. on Robotics and Automation, 2011

Ranking of approach vectors
Brighter: Higher rank
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Category-Based Grasp Synthesis

Previous approaches: 

Similar low-level features → Similar grasp

Idea: Similarity on semantic level

Different shape or appearance

Same functional category (affordances)

But can be grasped in a similar way

Category is not known

Category needs to be determined

Classification of objects based on features
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Category-Based Grasp Synthesis: Marton et al.

Features based on

Segmented point cloud

Segmented image region

Object classification

Bayesian network

Fixed set of categories

Only detection of categories

No grasp synthesis

Z. C. Marton, D. Pangercic, N. Blodow, and M. Beetz, Combined2-D–3-D categorization and classification for 
multimodal perception systems, Int. Journal of Robotics Research, vol. 30, no. 11, pp. 1378–1402, 2011.
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Category-Based Grasping: Madry et al.

Classification based on multi-model visual descriptors

Also uses task information

Bayesian network generates hand configuration

M. Madry, D. Song, and D. Kragic, From object categories to grasp transfer using probabilistic reasoning, in Proc. 
IEEE Int. Conf. on Robotics and Automation, 2012, pp. 1716–1723.
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Task-based grasp adaptation 
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Part-Based Grasp Planning for Familiar Objects

Goal

Generalized grasping information for familiar objects

Grasps can be used for familiar objects and partly known objects

Offline learning

Train grasps on multiple familiar object models

Identify promising grasps with transferability success measure

Online

Transfer grasps to similar novel objects

Vahrenkamp, N., Westkamp, L., Yamanobe, N., Aksoy, E. E. and Asfour, T., Part-based Grasp Planning for Familiar 
Objects, IEEE/RAS International Conference on Humanoid Robots (Humanoids), pp. 919-925, Nov, 2016

Red: relevant for the exam
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Part-Based Grasp Planning for Familiar Objects

Offline learning

Step 1: Object shape segmentation

Step 2: Labeling with task-related information

Step 3: Plan grasps on object parts  planning

Online execution

Localization and approximation of object parts

Grasp transfer to novel object
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Offline Step 1: Object Shape Segmentation

Head

Handle

Training Set Segmented Parts

Mesh segmentation based on Shape Diameter Function (SDF), (Shapira et al., 2008); 
SDF maps volumetric information onto the surface boundary mesh
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Offline Step 2: Labeling with Task-related Information

Segmented Parts

Head

Handle

Task: hand over

Task: tool use
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Training Objects: Category Screwdriver

handle action part
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Training Objects: Category Hammer
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Offline Step 3: Part-Based Grasp Planning

Head

Handle

Head

Handle

Training Set Template Grasps

MemoryX
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Planning Grasps for an Object Category

Plan grasps on object parts

Identify “good” grasps on all parts within an object category 

Power and precision grasps

Grasp evaluation based on

Wrench Space Grasp Quality

Force Closure measure 

Local optimization

Optimize grasping pose w.r.t. grasp quality on all training objects
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Online: Localization and Approximation of Object Parts

Input: RGBD data (point cloud)

Segmentation

Identify the object

Segment object parts

Classification

Classify each object part

Label the parts

Handle Head
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Online: Grasp Transfer to Novel Object 1/2

Identify if a perceived object belongs to a trained object category 

Apply trained grasps on novel object while taking into account task 
constraints

Online Planning

Perception Segments Grasp 
Transfer

Task Constraints

Solution

Category Matching IKPrimitive Extraction

MemoryX
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Online: Grasp Transfer to Novel Object 2/2

Task 
Constraints

Object Part 
Selection

Template Grasps

Grasp Transfer
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Part-Based Grasp Planning: Architecture

Online Grasp Transfer

Grasp Transfer Solution

IK

Grasp Planning

Object Set Segments

Mesh Segmentation

Template Grasps

Grasp Planning

Task LabelingObject Category

Robot Memory

Task ConstraintsPerception 
Primitive Extraction

Object Segments

Object Category
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Part-based Grasp Planning 
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Grasping Unknown Objects



Robotics II: Humanoid Robotics | Chapter 03223

Grasping Objects: Outline

Grasping known objects
Recap (see “lecture Robotics I”)

Grasping familiar objects
Concepts

Different approaches

Part-based grasp planning for familiar objects

Grasping unknown objects
Concepts

Approximating unknown object shape

From low-level features to grasp hypotheses
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Grasping Unknown Objects: Concept

How to grasp unknown objects?

Object model is not available

No access to similar objects or grasp experiences

Mapping: Noisy sensor data → Grasp hypotheses

Approaches can be divided into two methods

Approximating unknown object shape

From low-level features directly to grasp hypotheses

• Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE 
Tran. on Robotics, pp. 289-309, vol. 30, no. 2, 2014 

• Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian, Clemens Eppner, Jürgen Leitner, Jeannette Bohg, 
Antonio Morales, Tamim Asfour, Danica Kragic, Dieter Fox, Akansel Cosgun. Deep Learning Approaches to Grasp 
Synthesis: A Review. IEEE Transactions on Robotics, 2023 
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Grasping Unknown Objects: Flow-Chart

Scene

Scene
segmentation

Segmented cloud

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica 
Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE Tran. 
on Robotics, pp. 289-309, vol. 30, no. 2, 2014 

Shape fitting/ 
approximation

Feature
extraction

Reachability 
filtering

Segmented shape

Heuristic grasp 
generation and 

ranking

Execution

Grasp

Grasp hypotheses Grasp hypotheses

Scene model

ShapeLow-level 2D/3D features

Shape approximation

Heuristic grasp 
generation and 

ranking

Low Level Features

Deep learning for feature extraction 
and grasp hypothesis generation
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Grasping Unknown Objects: Flow-Chart

Scene

Scene
segmentation

Segmented cloud

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica 
Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE Tran. 
on Robotics, pp. 289-309, vol. 30, no. 2, 2014 

Shape fitting/ 
approximation

Feature
extraction

Reachability 
filtering

Segmented shape

Heuristic grasp 
generation and 

ranking

Execution

Grasp

Grasp hypotheses Grasp hypotheses

Scene model

ShapeLow-level 2D/3D features

Shape approximation

Heuristic grasp 
generation and 

ranking
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Approximating Unknown Object Shape

Idea
Approximate object shape using shape primitives

Plan grasp on approximated shape

Input can be  
Monocular images

Stereo images

RGBD data (point cloud)

Shape approximation methods
Quadrics

Local normal estimation

Mesh construction (using symmetry)
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Approximation using Quadrics: Dunes et al.

Find a quadric that approximates at best the shape of 
the object

Features: object minor axis, its centroid position and its 
rough size

Use of active vision:

Gather multiple views of the object
Minimize uncertainty of parameters
Determine the next best view

C. Dunes, E. Marchand, C. Collowet, and C. Leroux, Active Rough Shape Estimation of Unknown Objects, 
in IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2008, pp. 3622–3627.
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Approximation on Point Clouds: Marton et al.

Input: Point cloud

Initial step:

Estimation of surface normal and minimal curve 
radius for each point from one single view 

Different surface estimation methods are tested:

1. Fit boxes and cylinders

2. Detect revolution surfaces

3. Triangulate free form surfaces

Grasp planning on estimated object surface
Z. C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz, 
General 3D Modelling of Novel Objects from a Single View, in IEEE/RSJ 
Int. Conf. on Intelligent Robots and Systems (IROS), 2010, pp. 3700 – 3705.
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Approximation on Point Clouds: Marton et al.

Z. C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz, General 3D Modelling of Novel Objects from a Single View, in IEEE/RSJ Int. Conf. on Intelligent 
Robots and Systems (IROS), 2010, pp. 3700 – 3705.

https://www.youtube.com/watch?v=ZS3ZH7GTCwk

https://www.youtube.com/watch?v=ZS3ZH7GTCwk
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Shape Completion Based on Symmetry: Bohg et al.
Detect planar reflection symmetry in point cloud

Each point P can be uniquely associated with a second point Q by  reflection on the opposite  side 
of a symmetry plane

Iteratively improve and test hypothesis for symmetry plane

Object shape completion
Create a mesh based on original and mirrored points

Use Poisson reconstruction to create a mesh (estimate normal using kd-tree based method)

Plan grasps on the completed object shape

J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, N. Bergström, D. 
Kragic, and A. Morales, Mind the Gap – Robotic Grasping under Incomplete 
Observation, in IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.
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Shape Completion Based on Symmetry: Bohg et al.

J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, 
N. Bergström, D. Kragic, and A. Morales, Mind the Gap –
Robotic Grasping under Incomplete Observation, in IEEE 
Int. Conf. on Robotics and Automation (ICRA), 2011.

https://www.youtube.com/watch?v=jskDy2IfQr4

https://www.youtube.com/watch?v=jskDy2IfQr4
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Shape Completion: Schiebener et al.

Similar to (Bohg et al. 2011) we assume that a symmetry 
plane of the object is perpendicular to the supporting surface

Difference: several hypotheses for the supporting surface

Only planar reflection symmetry
→ Still holes in the point cloud

→ Additional completion steps

Sides of the object
Projection into the camera plane

Subdivide image into horizontal segments

Find minimal and maximal point in horizontal direction

Connect with mirrored points

Bottom of the object
Use supporting plane Schiebener, David, et al. Heuristic 3D object shape completion based on symmetry and 

scene context. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 
2016
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Finding symmetry planes (Schiebener et al.)

Proposed approach: Symmetry assumption plus 
information about scene context

Estimate possible support surfaces based on 
neighboring points around the segmented object
Search for best symmetry plane perpendicular to 
these support surfaces

Generate symmetry plane candidates
Mirror object points on them
Rate them based on visibility criteria

Mirrored points may
Coincide with the original points
Lie behind the original points
Lie in front of the object
Lie besides the object
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Object shape completion (Schiebener et al.)

Completed point cloud results from

Mirroring at the symmetry plane (green)

Regular samples in intersection of estimated support plane and bottom part of the object 
(light blue)

Along edges: Straight lines from the front to the back side in the depth direction (dark blue)
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Object shape completion (Schiebener et al.)
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Shape completion results (Schiebener et al.)

Complete shapes obtained from segmentation
Mean distance between completed shape and ground truth model, depending on 
calculation time

Completed shape allows grasp planning, but 
inaccuracies must be expected and handled
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Grasp Synthesis using Primitive Fitting and PCA

Preprocessing: Point Cloud filtering and region growing segmentation

Grasp synthesis using primitive fitting and principal component analysis

Segmentation

Principal Component Analysis (PCA)

Object-Oriented Bounding Boxes (OOBBs)

Grasp synthesis
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Grasp Synthesis using Primitive Fitting and PCA

Pohl, C., Hitzler, K., Grimm, R., Zea, A., Hanebeck, U. D. and Asfour, T., Affordance-Based Grasping and Manipulation in Real World 
Applications, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9569-9576, October, 2020
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Grasping Unknown Objects: Flow-Chart

Scene

Scene
segmentation

Segmented cloud

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica 
Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE Tran. 
on Robotics, pp. 289-309, vol. 30, no. 2, 2014 

Shape fitting/ 
approximation

Feature
extraction

Reachability 
filtering

Segmented shape

Heuristic grasp 
generation and 

ranking

Execution

Grasp

Grasp hypotheses Grasp hypotheses

Scene model

ShapeLow-level 2D/3D features

Heuristic grasp 
generation and 

ranking

Low Level Features

Deep learning for feature extraction 
and grasp hypothesis generation
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From Low-Level Features to Grasp Hypotheses

Step 1: Vision/Image Processing

Edge detection

Surface detection

Step 2: Abstract elements extraction

Edge based

Surface based

Step 3: Geometry analysis for grasping

Edge based

Surface based
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From Low-Level Features to Grasp Hypotheses 2/2

Early Cognitive Vision (ECV) based Elementary Grasping Action (EGA) (Kraft et al. 2009, 

Popovic et al. 2011)

Graspable Boundary and Convex Segments (Ala et al. 2015)
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Hierarchical ECV system (Step 1: Vision/Image Processing)

2D line segments

3D line segments

3D contours

2D texlets

3D texlets

3D surflings

• Proximity
• Collinearity
• Co-circularity
• Similar appearance

• Color
• Position
• Orientation

Dirk Kraft, Renaud Detry, Nicolas Pugeault, Emre Baseski, Justus Piater, Norbert 
Krüger, Learning objects and grasp affordances through autonomous 
exploration. International Conference on Computer Vision Systems, pp. 235-244, 
2009

Mila Popović, Dirk Kraft, Leon Bodenhagen, Emre Başeski, Nicolas Pugeault, Danica 
Kragic, Tamim Asfour, Norbert Krüger, A strategy for grasping unknown objects 
based on co-planarity and colour information. Robotics and Autonomous 
Systems, pp. 551-565, vol. 58, no. 5, 2010

Early Cognitive Vision based Elementary Grasping Action (I)
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Co-colourity Co-planarityProximity

Stereo Reconstruction 3D Nurb Corrected

Early Cognitive Vision based Elementary Grasping Action (II)
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Edge Elementary Grasping Action (eEGA)

Extract abstract contours (Step 2: Abtract elements extraction)

Generate edge based grasping actions (Step 3: Geometry analysis for grasping)

Find a pair of contours with similar properties (co-
planarity and co-colority)

Geometry 
Analysis

Early Cognitive Vision based Elementary Grasping Action (III)
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Surface Elementary Grasping Actions (sEGA) 

Contact points extraction (Step 2: Abtract elements extraction)

boundary 
surfling

contact 
point

Early Cognitive Vision based Elementary Grasping Action (IV)
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Surface Elementary Grasping Actions

Contact points extraction (Step 2: Abtract elements extraction)

Contact points selection (Step 3: Geometry analysis for grasping)

Pinch grasps: any contact 
points generate a valid grasping 
attempt

Constraints (in the order):
1. Contact combinations are too far apart;
2. The angle between contact normal and 

direction of the force (stable grasping);

Geometry 
Analysis

Early Cognitive Vision based Elementary Grasping Action (V)
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’Grasping Reflex’ based on Co-planarity

Early Cognitive Vision based Elementary Grasping Action (VI)
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Early Cognitive Vision based Elementary Grasping Action (VII)
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. 

Co-planarity relation between visual entities define 
potential grasping affordances

Surprising result: A success rate between 30-40% is 
already achievable by such a simple mechanisms.

One reason is the high level mechansism for hypotheses rejections 
through motion planning

There is an autonomous success evaluation based on 
force/haptic information

Collision, no success, unstable, stable

Joint work with Norbert Krüger, Dirk Kraft  and Mila 
Popovic,  University of Southern Denmark

Early Cognitive Vision based Elementary Grasping Action (VIII)

file:///C:/1. Tamims Data/Projects/2. Paco+/5. Reviews/3. Review 5-6 May 2009 Edinburgh/slides/videos/GraspReflex_NoTitle.avi
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Graspable Boundary and Convex Segments (I)

Grasplet

Graspable boundary segment: A segment that corresponds to a 3D spatial discontinuity.

Graspable convex segment: A segment along which the angle between the two faces 
forming the segment is greater than 180 deg.

RajeshKanna Ala, Dong Hwan Kim, Sung Yul Shin, ChangHwan Kim, Sung-Kee Park, A 3D-grasp synthesis algorithm to grasp 
unknown objects basedon graspable boundary and convex segments. Information Sciences, vol. 295, pp. 91-106, 2015 
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Contour segments (Step 1: Vision/Image Processing)

Graspable Boundary and Convex Segments (II)
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Grasplets extraction (Step 2: Abtract elements extraction)

graspable 
boundary 
segment

graspable 
convex 
segment

Graspable Boundary and Convex Segments (III)
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Steps:
1. Draw line

• 𝐺𝐿 𝑠. 𝑡. 𝐺𝐿 ⊥ 𝐺𝑛𝑖 , 𝐺𝐿 ⊥ 𝐺𝑛𝑗
• 𝐺𝑛𝑖

′ 𝑠. 𝑡. 𝐺𝑛𝑖
′ ⊥ 𝐺𝐿, 𝐺𝑛𝑖

′ ⊥ 𝐺𝑛𝑖
• 𝐺𝑛𝑗

′ 𝑠. 𝑡. 𝐺𝑛𝑗
′ ⊥ 𝐺𝐿, 𝐺𝑛𝑗

′ ⊥ 𝐺𝑛𝑗
2. Calculate angles

• 𝜃′ ≔ ∠𝐺𝑛𝑗 , 𝐺𝐿

• Θ′ ≔ ∠𝐺𝑛𝑖
′ , 𝐺𝑛𝑗

′

• 𝜙′ ≔ ∠Π𝑖𝑚, Π𝑗𝑚
3. Grasping decision

𝜃′ ≈ 90𝑜, Θ′ ≈ 0𝑜, 𝜙′ ≈ 180𝑜

• 𝑉𝑖𝑚 and 𝑉𝑗𝑚 are inward and in 

opposite direction => PLANAR grasp

• 𝑉𝑖𝑚 and 𝑉𝑗𝑚 are parallel and in same 

direction => PARALLEL grasp

Θ′

Grasping generation (Step 3: Geometry analysis for grasping)

Graspable Boundary and Convex Segments (IV)
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Machine Learning Approaches
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Deep Learning Approaches to Grasp Synthesis: A Review

Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian, Clemens Eppner, Jürgen Leitner, Jeannette Bohg, Antonio Morales, 
Tamim Asfour, Danica Kragic, Dieter Fox, Akansel Cosgun. Deep Learning Approaches to Grasp Synthesis: A Review. Transactions on 
Robotics, 2023 
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Core topics in the survey 

Main Methods 

Supporting methods 

Dataset Design 

Benchmarking 

Deep Learning Approaches to Grasp Synthesis: A Review

Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan 
Mousavian, Clemens Eppner, Jürgen Leitner, Jeannette Bohg, 
Antonio Morales, Tamim Asfour, Danica Kragic, Dieter Fox, 
Akansel Cosgun. Deep Learning Approaches to Grasp 
Synthesis: A Review. Transactions on Robotics, 2023 
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Training Data for Grasping

Every learning approach depends on the training data

What sources of data are available in the case of grasping?

Learning by demonstration
Human teacher record grasping data with motion capture and data gloves

Training data collection on the target system
Trial and error on the target system

Data is collected while the grasps are executed and strategy is refined (reinforcement 
learning)

Training data generation in simulation
Simulate grasps kinematics with grasp metrics

Simulate the whole robot/object dynamics with a dynamic simulator

Hand-labeled data
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Deep learning approaches for grasping

Learning by demonstration

Grasp hypothesis generation and scoring
Generation of datasets in simulation

Hand-labeled datasets

Direct regression, discriminative approaches, heat maps 

Sim2real
Reinforcement learning

Domain randomization

Domain adaptation, generative adversarial models

Learning on the target system
Reinforcement learning
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Grasp hypothesis generation and scoring

The starting point for the learning is a dataset

Each entry in the dataset consists of a 
Camera image (RGB or RGBD) or point cloud

Hand pose

Hand configuration

Tactile information (sometimes)

Grasp score

Grasp hypothesis generation pipeline
Pre-processing

Model inference

Post processing

Camera 
image

Model
Pre 

processing
Post 

processing

Best-rated
grasp 

hypothesis
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Regression Approach

Regression approaches are straightforward when it comes to deep learning for 
grasping

Idea/Approach:

No pre/post processing

Directly feed camera images into the network and predict the best grasp

Common network architecture

Convolutional layers, followed by some fully connected (FC) layers

Camera 
image

Neural 
network

Best-rated
grasp 

hypothesis

Camera 
image

conv conv FC FC Grasp pose
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Depth Image Grasps

DCNN

P. Schmidt, N. Vahrenkamp, M. Wächter and T. Asfour, Grasping of Unknown Objects using Deep Convolutional 
Neural Networks based on Depth Images, IEEE International Conference on Robotics and Automation (ICRA), 2018

Regression Approach: Deep Grasping (I)
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Training

Execution

Objects and Grasp 
Information Dataset DCNN

EvaluationDCNNDepth Camera Data

Regression Approach: Deep Grasping (II)
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KIT object models database

Yale-CMU-Berkeley object and model set

Regression Approach: Deep Grasping (III)
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Simox Skeleton Grasp Planner

𝑥
𝑦
𝑧
𝑟𝑜𝑙𝑙
𝑝𝑖𝑡𝑐ℎ
𝑦𝑎𝑤

12 objects

250 grasps each

Regression Approach: Deep Grasping (IV)
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ArmarX Simulation

Rendered depth images of the training objects
Objects placed in front of camera and rotated 
randomly 

Small random offset in distance

Selection of suitable grasp:
Golden grasp Φ (reference grasp; manual) 

Available grasps Θ𝑖
Normalisers 𝜃 and 𝜔

Penalty Metric:

For current object pose, determine grasp 𝜣 ∈ 𝜣𝒊
which is most similar to 𝜱

Ψ𝑖 =
Θ𝑖 − Φ

𝜃
+
𝑎𝑥𝑖𝑠𝐴𝑛𝑔𝑙𝑒 Θ𝑖 , Φ

𝜔

Regression Approach: Deep Grasping (V)
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34°
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5
23
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11°

45
23
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21°

20
-40
550

41°
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30°

10
56

434

4°
34°

110°

3
-10
456

78°
12°
35°

5
23

512

15°
45°
11°

Depth Image

Grasp Configuration 
(camera transformed)

x
y
z

r
p
y

…

single training sample

~10GB of training data

12 objects; 5.000 samples per object -> 60.000 samples
Training Dataset

Regression Approach: Deep Grasping (VI)
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61.5 million weights, 246 MB

Architecture

Regression Approach: Deep Grasping (VII)
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5
23

512

15°
45°
11°

Image

Label

DCNN

7
29

502

5°
35°
15°

Loss Function

Inference

∆ Loss

single training sample

backpropagation

Training

Regression Approach: Deep Grasping (VIII)
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Training

Execution

Objects and Grasp 
Information Dataset DCNN

EvaluationDCNNDepth Camera Data

Regression Approach: Deep Grasping (IX)
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Post Processing

Approach Vector Post Processing (AVPP): uses only raw data and collsion model of th 
hand

Regression Approach: Deep Grasping (X)
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Post Processing

Approach Vector Post Processing (AVPP): uses only raw data and collsion model of 
the hand

Regression Approach: Deep Grasping (X)
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Evaluation in simulation: Force Closure Analysis in Simox

Input Analysis of Inference

Regression Approach: Deep Grasping (XI)
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256 grasps per object

Objects were not previously included in training

Object Force-Closure AVPP necessary

salt 71,88% 86,72%

oil 70,31% 91,02%

appletea 57,42% 82,81%

softball 100% 49,22%

softcake 36,33% 82,42%

spraybottle 37,5% 73,43%

spam12oz 94,14% 73,05%

tennisball 94,92% 42,58%

bleach 92,58% 85,16%

Regression Approach: Deep Grasping (XII)
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Regression Approach: Deep Grasping (XIII)
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Regression Approach: Deep Grasping (XIV)
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Discriminative Approaches

Discriminative approaches learn a score for grasp hypothesis based on sensor data

Idea/Approach:

Neural Network estimates the quality of a grasp based on incomplete information

Assumption: Network will learn to internally complete the missing information

Common network architecture

Convolutional layers, followed by fully connected (FC) layers

Camera image
Neural 

network
Grasp score

Hypothesis pose

Camera 
image

conv conv
FC FC Grasp score

Grasp hypothesis pose
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Discriminative Approach: Dex-Net 2.0 (I)

Generate grasp hypothesis/candidates

Score candidates with grasp quality CNN

Select best-rated grasp candidate for execution

Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics, Mahler et al., ICRA 2015
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How to generate grasp candidates?

Here: Gripper-specific approach

Good grasp candidate generation is problem-specific

Mostly approached by hand crafted classical algorithms

“Our grasp candidate model p(u|x) is a uniform 
distribution over pairs of antipodal contact 
points on the object surface that form a grasp 
axis parallel to the table plane”
Mahler et al., 2015

Training data

➔ Training data has to 
contain positive and 
negative training samples

Discriminative Approach: Dex-Net 2.0 (II)
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Heat Map Approaches

Heat map based approaches map images to images

Idea/Approach:

Rate the grasp quality for each pixel in the input image

Use image to image techniques from computer vision

Select pixel with highest predicted grasp score for execution

Common network architecture

Convolutional layers, followed by deconvolutional layers

Camera 
image

Neural 
network

Camera 
image

conv conv deconv Heat mapdeconv

Heat map



Robotics II: Humanoid Robotics | Chapter 03281

Heat Map Approach: Example (I)

Input data is represented as multiple modalities from RGB-D image

Original RGB image, depth image, ground truth affordance

HHA encoding: Horizontal disparity, Height above ground, Angle of surface normal with 
gravity

The CNN makes use of an encoder-decoder architecture and produces a k-channel 
image of probabilities, where k is the number of affordance classes

Anh Nguyen, Dimitrios Kanoulas, Darwin G. Caldwell, and Nikos G. Tsagarakis, 
Detecting object affordances with Convolutional Neural Networks, IROS 2016
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Affordance prediction results of the CNN

Heat Map Approach: Example (II)
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All points of the detected affordances are clustered and a grasp is represented as a 
rectangular box 

Heat Map Approach: Example (III)
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Comparison

Direct Regression

+ Simple structure, no post processing

- Averaging over all grasps

Discriminative

+ Multiple grasps per image

- Candidate generator is problem specific

Heat Map

+ Multiple grasps per image

- Post processing: From image to 6D pose

Input
Image

NN
Grasp
Pose

NN Rating
Candidate 
Generator

Argmax

Input
Image

NN
Heat 
Map

Image to 
pose

Input Model Output Post process
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Review Papers on Grasping 

Antonio Bicchi, Vijay Kumar, Robotic grasping and contact: A review. International 
Conference on Robotics and Automation, ICRA 2000

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic. Data-Driven Grasp 
Synthesis - A Survey. IEEE Transactions on Robotics, pp. 289-309, vol. 30, no. 2, 2014 

Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian, Clemens Eppner, 
Jürgen Leitner, Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Dieter 
Fox, Akansel Cosgun. Deep Learning Approaches to Grasp Synthesis: A Review. 
https://doi.org/10.48550/arXiv.2207.02556
(accepted to IEEE Transactions on Robotics in April 2023) 

https://doi.org/10.48550/arXiv.2207.02556
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The End 

…  still a lot to do in robotic grasping!


